Conservation laws of scaling-invariant field equations
نویسنده
چکیده
A simple conservation law formula for field equations with a scaling symmetry is presented. The formula uses adjoint-symmetries of the given field equation and directly generates all local conservation laws for any conserved quantities having non-zero scaling weight. Applications to several soliton equations, fluid flow and nonlinear wave equations, Yang-Mills equations and the Einstein gravitational field equations are considered. AMS classification scheme numbers: 70S10 PACS numbers: 03.50.-z, 04.20.-q, 05.45.Yv Conservation laws of scaling-invariant field equations 2
منابع مشابه
On Black-Scholes equation; method of Heir-equations, nonlinear self-adjointness and conservation laws
In this paper, Heir-equations method is applied to investigate nonclassical symmetries and new solutions of the Black-Scholes equation. Nonlinear self-adjointness is proved and infinite number of conservation laws are computed by a new conservation laws theorem.
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملNonoscillatory Central Schemes for Hyperbolic Systems of Conservation Laws in Three-Space Dimensions
We extend a family of high-resolution, semidiscrete central schemes for hyperbolic systems of conservation laws to three-space dimensions. Details of the schemes, their implementation, and properties are presented together with results from several prototypical applications of hyperbolic conservation laws including a nonlinear scalar equation, the Euler equations of gas dynamics, and the ideal ...
متن کاملar X iv : m at h - ph / 0 10 50 23 v 1 1 7 M ay 2 00 1 EXTERIOR DIFFERENTIAL FORMS IN FIELD THEORY
A role of the exterior differential forms in field theory is connected with a fact that they reflect properties of the conservation laws. In field theory a role of the closed exterior forms is well known. A condition of closure of the form means that the closed form is the conservative quantity, and this corresponds to the conservation laws for physical fields. In the present work a role in fie...
متن کاملA Nonlinear Hamiltonian Structure for the Euler Equations
The Euler equations for inviscid incompressible fluid flow have a Hamiltonian structure in Eulerian coordinates, the Hamiltonian operator, though, depending on the vorticity. Conservation laws arise from two sources. One parameter symmetry groups, which are completely classified, yield the invariance of energy and linear and angular momenta. Degeneracies of the Hamiltonian operator lead in thre...
متن کامل